- Perspectives on Basic Elements of the Scale-Up Model
 - Systemic capacity development issues for sustainability / expansion successfully addressed
 - Specialized teacher expertise
 - Science concept understanding
 - Science IDEAS implementation
 - Teacher leadership cohort
 - Delivered PD series to new schools/teachers
 - Provided in-house school support for new teachers
 - Leadership (with principal) in grade level planning for multiday lessons/cumulative review
 - Established Science IDEAS school committee
 - Provided support to new schools
 - Principal leadership
 - Developed and field-tested principal-implemented fidelity process
 - Developed "talking points" for Science IDEAS model as overall school priority

- Perspectives on Basic Elements of the Scale-Up Model
 - Systemic capacity development issues for sustainability / expansion successfully addressed (Continued)
 - Development of "model" school sites as basis for expansion
 - "Strong" implementation of Science IDEAS model in multiple schools
 - Served as reference sites for schools considering adoption of model
 - Provided evidence of feasibility of model application
 - Strengthened evidence of effect of model on student achievement
 - Adapted Science IDEAS model to K-2 (modified 45 minute/day) to strengthen overall schoolwide priority

- Model Refinements via "Lessons Learned" Through Scale-Up Initiative
 - Operational standards for developing elements of effective scale up model as "reverse-engineered" Instructional Systems Design (ISD) with "value-added" facet
 - Use of ISD for start-up, sustainability, expansion requirements
 - Use of ISD for identifying areas for capacity development
 - Development of systemic "value" components that support intervention
 - Distinguishing (and addressing) two complementary perspectives for scale-up design
 - <u>Bottom up</u> (e.g., For researchers who want to scale-up an intervention, what are the requirements for optimal fidelity of implementation)
 - <u>Top down</u> (e.g., For superintendents who want to implement an intervention Districtwide, what process should be followed and what tools are necessary to accomplish this goal)

- Model Refinements via "Lessons Learned" Through Scale-Up Initiative
 - Insure dynamic scale-up initiative keeps within scope of available implementation support
 - Maintain resource capability for all project commitments (e.g., PD, classroom support, implementation monitoring, communication of implementation status to school participants and central administrators)
 - Build capacity development of participants as a necessary foundation for expanding scope of intervention
 - Develop and implement explicit plans for establishing systemic value of intervention as basis for sustainability, future expansion
 - Identify and communicate with appropriate school / district personnel on a continuing basis
 - Work to establish the relevance / contribution of intervention to school / district systemic value structure

- Model Refinements and "Lessons Learned" Through Project Scale-Up Initiative
 - Web-based teacher support tools (in progress)
 - Science curriculum framework linking standards with instructional content: Grades K-5
 - Video modeling of Science IDEAS instructional strategies
 - Support for teacher multi-day lesson planning
 - Provide access to Science IDEAS instructional resources
 - Support for teacher collaboration / planning / sharing
 - Classroom tool for assessing mastery of science concepts
 - Web-based scale-up management-support tools (in progress)
 - Implementation planning tool
 - Consists of operational framework for specifying scale-up tasks linked to timelines over 3-year period
 - » Science IDEAS implementation
 - » Systemic capacity development
 - Supports monitoring of planning task completion

- Model Refinements and "Lessons Learned" Through Project Scale-Up Initiative
 - Web-based scale-up management-support tools (in progress)
 - Instructional implementation management tool (for central administrators)
 - School reported implementation data re: time scheduled, pull-outs, % time spent reading, implementation fidelity by classroom/teacher/grade/school
 - Report Structure- Implementation status description and trends of obtained data within and across years
 - Complementary management strategy for validation of school-reported status data via school visitations

- Model Refinements and "Lessons Learned" Through Project Scale-Up Initiative
 - Web-based scale-up management-support tools (in progress)
 - Establishment of longitudinal student achievement trajectories
 - Comparing longitudinal achievement trends of project schools with controls
 - Relating student achievement growth to implementation fidelity
 - Providing capacity for predicting expected improvement in student achievement resulting from school adoption / implementation of model
 - Establishing predictive validity of student success in middle/high school from participation in Science IDEAS model in grades K-5 (vs. controls)

- Model Refinements and "Lessons Learned" Through Project Scale-Up Initiative
 - Issues reflecting large-scale / multi-year complications
 - Maintaining ongoing project communication with central administrators, principals, and teachers in the face of changing school personnel/priorities
 - Communication of status of project (e.g., implementation, achievement outcomes)
 - » Person to person dialog
 - » Participants acting as advocates
 - » Regularly updated management reports
 - Communication of status of project (e.g., benefits to students via parent contacts)

- Model Refinements and "Lessons Learned" Through Project Scale-Up Initiative
 - Issues reflecting large-scale / multi-year complications
 - Establishment of "added value" of project re: advancing district systemic goals to central school administrators, principals, teachers, parents
 - Encouragement of direct classroom visits/observation (e.g., student engagement, learning performance, interest, cumulative learning)
 - Teacher-reported scenarios (e.g., student behaviors demonstrating in-depth science understanding in classroom/out-of-school settings)
 - Student "take-homes" to parents (e.g., share / explain work completed)
 - Hard data / data projections (e.g., achievement outcomes / projections re: District priority achievement outcomes)
 - Management reports addressing systemic priorities (e.g., preparing students for success in high school)

Implications for science education research and practice

- Use integration of reading in science as basis for advocating increased time for science in grades K-5
 - To increase student reading comprehension proficiency
 - · To prepare students for future success in secondary science
- Pursue interdisciplinary research perspectives for addressing the problem of meaningful, cumulative, learning in science

Implications for scale-up research and practice

- Approach design of scale-up initiatives from an instructional systems perspective
- Design initial (start-up) phase of scale-up initiatives in a manner that includes all of the elements required for subsequent expansion
- Insure that the design of a scale-up model provides for the evolution of the implementation and sustainability of the intervention without the active involvement of the research initiator(s)
- Make the establishment of the "added value" of the intervention a high-priority element of the overall scale-up initiative

Intervention effectiveness, methodological challenges

- Science IDEAS was effective in accelerating science and reading achievement in grades 3-4-5 and in impacting subsequent science and reading achievement in grades 6-7-8
- Major methodological challenge was developing a scale-up model that linked a research intervention to a subsequent scale up initiative

Problems with partner districts that limited/threatened project design

- Implementation of a small paradigmatically different research initiative in large districts requires potential conflicts with districtwide policy and initiatives to be resolved
- Continuing personnel changes in central administrators and principals require substantial communication attention
- Local district pressures for schools to allocate extensive instructional time to preparation for State accountability tests impacted Science IDEAS instructional time

Intervention "scale-up" and "sustainability" status

 Project participating schools increased from 2 to 12 over a 5-year period.

Present implementation of all participating schools, given limited support the present year:

- 7 schools are strong or model implementations schoolwide
- 4 schools are strong, but not 100% schoolwide
- 1 school was strong, but presently has become inconsistent
- 2 schools only implemented in very "spotty" fashion

New schools added 2008-2009 and expected 2009-2010:

- 1 school- new Science-Mathematics Magnet
- 1 school- Environmental Center
- 1 school- low SES with new principal who was in project school
- Strong vs. weak principal leadership was a major factor in schoolwide implementation of Science IDEAS (but would not be problem with "top-down" implementation)

- Generalizability of research resulting from the project
 - Science IDEAS model
 - Consistently effective in improving science and reading achievement
 - Feasible to implement if supported effectively
 - Multi-Phase Scale-Up Model
 - Indications are that scale-up model developed will support the start-up, sustainability, expansion of Science IDEAS
 - ISD scale-up framework and majority of web-based tools (e.g., planning, status monitoring, achievement projections) are generalizable to any instructional intervention in grades K-5

Project Scale-Up Model Conclusions

Project Conclusions

- Science IDEAS model findings
 - Provides basis for increasing time allocated to science in K-5
 - Encourages a greater emphasis on interdisciplinary perspectives in science education research
- Multi- Phase Scale-up model findings
 - Instructional systems design (ISD) provides a useful framework for engineering comprehensive scale-up initiatives
 - Major criteria for determining scale-up effectiveness are possible to accomplish
 - Consistent replication of achievement outcomes demonstrated in original, controlled research studies
 - Sufficiently robust scale-up models for engendering sustainability / expansion without active involvement of original researchers (i.e., through school-based implementation)